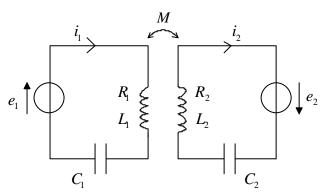


EXERCICE

INDUCTION ELECTROMAGNETIQUE

EXERCICE 28.9 -

• **ENONCE**: « Circuits R-L-C couplés par induction »



On considère deux circuits R-L-C couplés par mutuelle induction (coefficient M).

- 1) a) écrire les équations différentielles auxquelles satisfont $i_1(t)$ et $i_2(t)$.
- b) on se place en régime sinusoïdal forcé de pulsation ${\it W}$; mettre le système d'équations sous la forme :

$$\begin{pmatrix} \underline{e}_1 \\ \underline{e}_2 \end{pmatrix} = \begin{bmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{bmatrix} \begin{pmatrix} \underline{i}_1 \\ \underline{i}_2 \end{pmatrix}$$

c) en déduire l'expression de \underline{i}_2 en fonction de $\underline{e}_1,\ \underline{e}_2,\ M$ et de :

$$\underline{Z}_1 = R_1 + j \left(L_1 \mathbf{w} - \frac{1}{C_1 \mathbf{w}} \right) \qquad \text{et} \qquad \underline{Z}_2 = R_2 + j \left(L_2 \mathbf{w} - \frac{1}{C_2 \mathbf{w}} \right)$$

2) On considère maintenant que $e_2(t)=0$ et $e_1(t)=V\cos(\mathbf{w}t)$; de plus, les deux circuits

$$L_1 C_1 = L_2 C_2 = \frac{1}{\mathbf{w}_0^2}$$

On pose:

$$\begin{cases} Q_{1} = \frac{L_{1} \mathbf{w}_{0}}{R_{1}} ; & Q_{2} = \frac{L_{2} \mathbf{w}_{0}}{R_{2}} ; & Q = \frac{2Q_{1}Q_{2}}{Q_{1} + Q_{2}} \\ k = \frac{M}{\sqrt{L_{1}L_{2}}} ; & \mathbf{a} = \frac{\mathbf{w} - \mathbf{w}_{0}}{\mathbf{w}_{0}} ; & x = 2Q\mathbf{a} \\ n^{2} = 4 \times \frac{(1 + k^{2}Q_{1}Q_{2})Q_{1}Q_{2}}{(Q_{1} + Q_{2})^{2}} \end{cases}$$

- a) que représentent les grandeurs introduites ci-dessus ?
- b) après calculs, on montre que : $r = \frac{I_2(\mathbf{w})}{I_2(\mathbf{w}_0)} = \frac{n^2}{\sqrt{(n^2 x^2)^2 + 4x^2}}$

 $(I_2(\mathbf{W}) \text{ et } I_2(\mathbf{W}_0) \text{ représentent des valeurs efficaces})$

INDUCTION ELECTROMAGNETIQUE

EXERCICE

Pour n fixé, étudier la variation de r en fonction de x (on fera apparaître une valeur critique pour n).

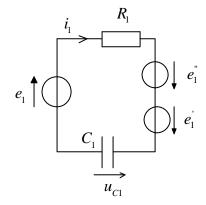
- c) dans le cas où r est maximum pour deux pulsations \pmb{w}_1 et \pmb{w}_2 , montrer que \pmb{w}_1 et \pmb{w}_2 sont symétriques par rapport à \pmb{w}_0 .
 - d) calculer le rapport $\frac{\textit{\textbf{w}}_1-\textit{\textbf{w}}_2}{\textit{\textbf{w}}_0}$ (on prendra $\textit{\textbf{w}}_1\succ \textit{\textbf{w}}_2$).
 - 3) On prend maintenant $Q_1 = Q_2 = Q$:
- a) montrer que plus le facteur de qualité Q est grand, plus le phénomène « apparition de deux maximums » (pour la courbe $r(\mathbf{W})$) a lieu pour un couplage « lâche » (k faible).
- b) étudier la variation du rapport $\frac{\pmb{w}_1-\pmb{w}_2}{\pmb{w}_0}$ en fonction de k (à Q fixé), puis en fonction de Q (à k fixé); calculer enfin $(\pmb{w}_1-\pmb{w}_2)_{\max}$.

EXERCICE

INDUCTION ELECTROMAGNETIQUE

CORRIGE: « Circuits R-L-C couplés par induction »

1) a) En tenant compte de la fem d'auto-induction $e_1^{'}$ et de la fem de mutuelle induction $e_1^{''}$ (en adoptant la convention **générateur**), le schéma électrocinétique équivalent au circuit (1) est le suivant :



Avec:
$$e_1' = -L_1 \frac{di_1}{dt}$$
 et $e_1'' = -M \frac{di_2}{dt}$

Par ailleurs :
$$i_1 = C_1 \frac{du_{C1}}{dt}$$

La loi des mailles fournit alors :

$$e_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + \frac{1}{C_1} \times \int i_1 dt + M \frac{di_2}{dt}$$

Une démarche analogue appliquée au circuit (2) conduit à :

$$e_2 = R_2 i_2 + L_2 \frac{di_2}{dt} + \frac{1}{C_2} \times \int i_2 dt + M \frac{di_1}{dt}$$

Rq: on obtient deux équations différentielles couplées.

b) Le passage en complexe permet d'obtenir le système suivant :

$$\begin{cases}
\underline{e}_{1} = \underline{Z}_{1} \times \underline{i}_{1} + jM \mathbf{w} \underline{i}_{2} \\
\underline{e}_{2} = \underline{Z}_{2} \times \underline{i}_{2} + jM \mathbf{w} \underline{i}_{1}
\end{cases} \Rightarrow \begin{bmatrix}
\underline{Z}_{11} & \underline{Z}_{12} \\
\underline{Z}_{21} & \underline{Z}_{22}
\end{bmatrix} = \begin{bmatrix}
\underline{Z}_{1} & jM \mathbf{w} \\
jM \mathbf{w} & \underline{Z}_{2}
\end{bmatrix}$$

$$\begin{pmatrix} \underline{i}_{1} \\ \underline{i}_{2} \end{pmatrix} = \begin{bmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{bmatrix}^{-1} \begin{pmatrix} \underline{e}_{1} \\ \underline{e}_{2} \end{pmatrix} = \frac{\begin{bmatrix} \underline{Z}_{2} & -jM\mathbf{w} \\ -jM\mathbf{w} & \underline{Z}_{1} \end{bmatrix}}{\text{Det} \begin{bmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{bmatrix}} \begin{pmatrix} \underline{e}_{1} \\ \underline{e}_{2} \end{pmatrix} \quad \Rightarrow \quad \underline{i}_{2} = \frac{-jM\mathbf{w}\underline{e}_{1} + \underline{Z}_{1} \times \underline{e}_{2}}{\underline{Z}_{1} \times \underline{Z}_{2} + M^{2}\mathbf{w}^{2}}$$

2) a) Q_1 et Q_2 représentent les **facteurs de qualité** respectifs des circuits (1) et (2) ; Qest un facteur de qualité « moyen » ; k est le coefficient de couplage des deux circuits : kvarie entre 0 et 1, plus k est petit, plus le couplage est « lâche » et plus k est grand, plus le couplage est «serré»; \mathbf{W}_0 est la **pulsation de résonance** en intensité de chacun des deux circuits, s'ils n'étaient pas couplés; a représente l'écart relatif à cette pulsation w_0 ; x et n sont des grandeurs permettant de simplifier les expressions obtenues (x représente l'écart relatif en pulsation, «amplifié » par le facteur de qualité, et n prend en compte l'influence du facteur de qualité et du coefficient de couplage).

INDUCTION ELECTROMAGNETIQUE

EXERCICE

b) Remarque préliminaire : dans le cas présent, on a $i_2 = \frac{-jM \mathbf{w} \underline{e}_1}{\underline{Z}_1 \times \underline{Z}_2 + M^2 \mathbf{w}^2} \Rightarrow$

$$I_{2}(\mathbf{w}) = \frac{M \mathbf{w}V}{\left[\left[R_{1} + j\left(L_{1}\mathbf{w} - \frac{1}{C_{1}\mathbf{w}}\right)\right] \times \left[R_{2} + j\left(L_{2}\mathbf{w} - \frac{1}{C_{2}\mathbf{w}}\right)\right] + M^{2}\mathbf{w}^{2}\right]}$$

et
$$I_2(\mathbf{w}_0) = \frac{M\mathbf{w}_0 V}{R_1 R_2 + M^2 \mathbf{w}_0^2}$$

 \Rightarrow après « quelques » calculs, on trouve effectivement l'expression proposée pour $r = \frac{I_2(\mathbf{w})}{I_2(\mathbf{w}_2)}$.

A n fixé, nous allons donc étudier la fonction r(x):

- * la fonction est continue et paire
- * $r(x) \to 0 \text{ pour } x \to \pm \infty$
- * cherchons les extremums de r(x), qui coïncident avec ceux de $(n^2-x^2)^2+4x^2$

il faut donc que : $2(n^2 - x^2) \times (-2x) + 8x = 0 \Rightarrow \begin{bmatrix} x = 0 & \text{ou} \\ x = \pm \sqrt{n^2 - 2} & \text{pour } n \ge \sqrt{2} \end{bmatrix}$

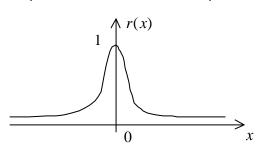
Rq1 : $n = \sqrt{2}$ est donc la valeur critique demandée

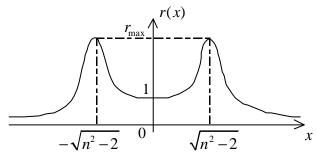
Rq2: pour $n \prec \sqrt{2}$, x=0 correspond à un **maximum** puisque $r(0)=1 \succ r(\infty)=0$

pour $n > \sqrt{2}$, x = 0 correspond à un **minimum** puisque $r(\pm \sqrt{n^2 - 2}) = \frac{n^2}{2\sqrt{n^2 - 1}}$,

et que $\frac{n^2}{2\sqrt{n^2-1}} > 1 = r(0)$, pour $n > \sqrt{2}$.

On peut résumer les résultats précédents par les deux courbes suivantes :





Rq: pour n suffisamment élevé, les deux circuits présentent **deux fréquences de résonance**, différentes de leur fréquence de résonance « propre » (pour un couplage nul).

c) $\mathbf{W}_1 = \mathbf{W}_0 + \frac{\mathbf{W}_0}{2O} x_1$ et $\mathbf{W}_2 = \mathbf{W}_0 + \frac{\mathbf{W}_0}{2O} x_2 = \mathbf{W}_0 - \frac{\mathbf{W}_0}{2O} x_1$ (puisque $x_2 = -x_1$) \Rightarrow on en déduit

que $\mathbf{\textit{W}}_{1}$ et $\mathbf{\textit{W}}_{2}$ sont **symétriques** par rapport à la pulsation $\mathbf{\textit{W}}_{0}$.

d) On a alors : $\frac{\mathbf{w}_1 - \mathbf{w}_2}{\mathbf{w}_0} = \frac{1}{2Q} (x_1 - x_2) = \frac{1}{Q} \sqrt{n^2 - 2}$

INDUCTION ELECTROMAGNETIQUE

EXERCICE

3) a) On a alors : $n^2=1+k^2Q^2$; l'apparition du « phénomène » ayant lieu pour $n^2=2$, on en déduit que :

$$k^2 Q^2 = 1$$
 \Rightarrow $k = \frac{1}{Q}$

Ainsi, plus le facteur de qualité Q est grand, plus le dédoublement de la pulsation de résonance a lieu pour une valeur faible du coefficient de couplage k: un bon facteur de qualité signifie moins de pertes relatives par effet Joule, c'est-à-dire un meilleur échange énergétique (de type électromagnétique) au sein de chacun des deux circuits \Rightarrow même un couplage faible suffit pour modifier les propriétés de résonance de ces circuits.

b) On a par ailleurs :
$$\frac{{\it w}_1 - {\it w}_2}{{\it w}_0} = \frac{1}{\it Q} \sqrt{n^2 - 1} = \sqrt{k^2 - \frac{1}{\it Q}^2}$$
 ; d'où :

* Q fixé : $\frac{\textit{\textbf{w}}_1-\textit{\textbf{w}}_2}{\textit{\textbf{w}}_0}$ varie comme $k \Rightarrow \text{si } k \nearrow$, les pulsations de résonance $\textit{\textbf{w}}_1$ et $\textit{\textbf{w}}_2$ se

séparent d'autant plus, et s'éloignent de $\mathbf{W}_{\!0}$.

*
$$k$$
 fixé : $\frac{\textit{\textbf{w}}_1 - \textit{\textbf{w}}_2}{\textit{\textbf{w}}_0}$ augmente également avec Q .

* enfin, avec
$$Q \to \infty$$
 et $k=1$, on obtient : $\left({{{m w}_1} - {{m w}_2}} \right)_{\max} = {{m w}_0}$

Page 5 Christian MAIRE © EduKlub S.A.